Excel Time Series Forecasting and Regression Analysis - Statistics HW Help

Time Series Forecasting and Regression Analysis

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.945855

R Square

0.894641

Adjusted

R Square

0.877081

Standard Error

2.626558

Observations

8

ANOVA

df

SS

MS

F

Significance F

Regression

1

351.4821

351.4821

50.94823

0.000381

Residual

6

41.39286

6.89881

Total

7

392.875

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

-5739.71

809.1556

-7.09346

0.000394

-7719.65

-3759.78

Year

2.892857

0.405287

7.137803

0.000381

1.901155

3.884559




  • Our company offers quality and prompt Statistical Homework Help Online.


  • We offer personalized help for any kind of Statistics subjects including Elementary Statistics, Stats 101, Business Statistics, Biostatistics, Probabilities, Advanced Statistics, etc.


  • Our service is convenient, efficient and confidential. We can solve stats problems for you.


  • We can help you with your EXCEL, SPSS, SAS, STATA, JMP and MINITAB assignments and projects.


  • Our rate starts $35/hour. We provide a Free Quote in hours. Quick turnaround!





\[Riders=-5,739.71+2.892857\text{ }Year\] \[Riders=-5,739.71+2.892857\times 2005=60.46429\]

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.939361

R Square

0.882399

Adjusted

R Square

0.865599

Standard Error

9.512398

Observations

9

ANOVA

df

SS

MS

F

Significance F

Regression

1

4752.6

4752.6

52.52321

0.00017

Residual

7

633.4

90.48571

Total

8

5386

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

-8756.85

1223.751

-7.15574

0.000184

-11650.6

-5863.14

Year

4.45

0.614023

7.24729

0.00017

2.998068

5.901932

\[Deer\text{ }Strikes = -8756.85+4.45\text{ }Year\] \[Deer\text{ }Strikes = -8756.85+4.45\times 2005=165.4\] The model is
\[Sales=-4003.17+2.011905\text{ }Year\] \[Sales=-4003.17+2.011905\times 2006=32.71429\] The model is
\[Weather\text{ }Alarms=-979.92+0.510714\,Year\] \[Weather\text{ }Alarms = -979.92+0.510714\times 2006 = 44.57262\] \[Sales=-4,821.32+2.485\text{ }Year\] \[Sales=-4,821.32+2.485\times 2005=161.6912\]
SUMMARY OUTPUT

Regression Statistics

Multiple R

0.960277

R Square

0.922131

R Square

0.906557

Standard Error

0.736788

Observations

7

ANOVA

df

SS

MS

F

Significance F

Regression

1

32.14286

32.14286

59.21053

0.000591

Residual

5

2.714286

0.542857

Total

6

34.85714

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

-2120.21

277.5053

-7.64027

0.000611

-2833.56

-1406.87

Year

1.071429

0.13924

7.694838

0.000591

0.713502

1.429356

\[Sales =-2,120.21+1,071429\text{ }Year\] \[Sales=-2,120.21+1,071429\times 1999=21.57143\]

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.928931

R Square

0.862914

Adjusted

R Square

0.828642

Standard Error

24.15308

Observations

6

ANOVA

df

SS

MS

F

Significance F

Regression

1

14688.51

14688.51

25.17867

0.007397

Residual

4

2333.486

583.3714

Total

5

17022

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

58196.37

11544.5

5.041047

0.007277

26143.64

90249.11

Year

-28.9714

5.773691

-5.01783

0.007397

-45.0018

-12.9411

\[Scrap\text{ }Rate=58,196.37-28.9714\text{ }Year\] \[Scrap\text{ }Rate=58,196.37-28.9714\times 2004=137.6286$=\] \[Tons\text{ }of\text{ }Grain=-8,928.54+4.5357\text{ }Year\] \[Tons\text{ }of\text{ }Grain=-8,928.54+4.5357\times 1985=74.85714\] The model is
\[Car\text{ }Theft\text{ }Rate=15,164.5-77.6071\text{ }Year\] \[Car\text{ }Theft\text{ }Rate=15,164.5-77.6071\times 2001=872.6071\] \[Car\text{ }Theft\text{ }Rate=15,164.5-77.6071\times 2002=795\] \[Car\text{ }Theft\text{ }Rate=15,164.5-77.6071\times 2003=717.3929\]