Minitab is a great tool to conduct an in depth Time Series analysis - Minitab Help

Time Series Analysis

quarter 1

quarter2

quarter 3

quarter 4

1

66

155

100

40

2

103

187

154

77

3

144

265

233

124

4

199

289

253

186

5

222

340

289

215

6

241

365

308

276




Need Help with Minitab?

We can help! Your satisfaction is guaranteed.

Our rate starts at $35/hour. Free quote in hours. Quick turnaround!


Year / Quarter

Sales

Index

1/1

66

1

1/2

155

2

1/3

100

3

1/4

40

4

2/1

103

5

2/2

187

6

2/3

154

7

2/4

77

8

3/1

144

9

3/2

265

10

3/3

233

11

3/4

124

12

4/1

199

13

4/2

289

14

4/3

253

15

4/4

186

16

5/1

222

17

5/2

340

18

5/3

289

19

5/4

215

20

6/1

241

21

6/2

365

22

6/3

308

23

6/4

276

24


Seasonal Indexes

Year / Quarter

Sales

Index

1/1

66

1

0.908087

1/2

155

2

1.347777

1/3

100

3

1.123660

1/4

40

4

0.620476

2/1

103

5

0.908087

2/2

187

6

1.347777

2/3

154

7

1.123660

2/4

77

8

0.620476

3/1

144

9

0.908087

3/2

265

10

1.347777

3/3

233

11

1.123660

3/4

124

12

0.620476

4/1

199

13

0.908087

4/2

289

14

1.347777

4/3

253

15

1.123660

4/4

186

16

0.620476

5/1

222

17

0.908087

5/2

340

18

1.347777

5/3

289

19

1.123660

5/4

215

20

0.620476

6/1

241

21

0.908087

6/2

365

22

1.347777

6/3

308

23

1.123660

6/4

276

24

0.620476


Minitab Time Series plot

Seasonally Adjusted Time Series from Minitab

Component analysis

Trend analysis result from Minitab

The model is
\[{{Y}_{t}}=74.5036+10.1430t\] \[\begin{array}{cc} & t=25\Rightarrow Y=328.0786 \\ & t=26\Rightarrow Y=338.2216 \\ & t=27\Rightarrow Y=348.3646 \\ & t=28\Rightarrow Y=358.5076 \\ \end{array}\]

Deseasonalized

Indexes

Seasonalized

25

328.0786

0.908087

297.9239116

26

338.2216

1.347777

455.8472934

27

348.3646

1.123660

391.4433664

28

358.5076

0.620476

222.4453616

Time Series Analysis using Regression

Sales

Time ($t$)

${{S}_{1}}$

${{S}_{2}}$

${{S}_{3}}$

66

1

1

0

0

155

1

0

1

0

100

1

0

0

1

40

1

0

0

0

103

2

1

0

0

187

2

0

1

0

154

2

0

0

1

77

2

0

0

0

144

3

1

0

0

265

3

0

1

0

233

3

0

0

1

124

3

0

0

0

199

4

1

0

0

289

4

0

1

0

253

4

0

0

1

186

4

0

0

0

222

5

1

0

0

340

5

0

1

0

289

5

0

0

1

215

5

0

0

0

241

6

1

0

0

365

6

0

1

0

308

6

0

0

1

276

6

0

0

0


ANOVA results from Minitab

Regression Coefficients

Residual plots

Unusual Observations

Exponential Smoothing

Season

Observed

Time Series

Multiple Regression

D. Exponential

Smoothing

7/1

262

297.923912

311.03

323.73

7/2

392

455.847293

415.36

333.2

7/3

321

391.443366

371.36

342.671

7/4

305

222.445362

301.52

352.142

Time Series

Multiple Regression

D. Exponential Smoothing

Abs. Mean Error

63.1923025

31.5575

47.33575

Mean Squared Error

4286.13512

1374.467625

2490.008326

Mean Abs. % Error

19.752765

10.37559531

15.19213812